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The mapping of faults provides essential information on many aspects of seismic 
exploration, characterisation of reservoirs for compartmentalisation and cap-rock 
integrity. However, manual interpretation of faults from seismic data is time-con-
suming and challenging due to limited resolution and seismic noise. In this study, 
we apply a convolutional neural network trained on synthetic seismic data with 
planar fault shapes to improve fault mapping in the Lower and Upper Cretaceous 
sections of the Valdemar Field in the Danish North Sea. Our objective is to evaluate 
the performance of the neural network model on post-stack seismic data from the 
Valdemar Field. Comparison with variance and ant-tracking attributes and a manual 
fault interpretation shows that the neural network predicts faults with more details 
that may improve the overall geological and tectonic understanding of the study 
area and add information on potential compartmentalisation that was previously 
overlooked. However, the neural network is sensitive to seismic noise, which can 
distort the fault predictions. Therefore, the proposed model should be treated as an 
additional fault interpretation tool. Nonetheless, the method represents a state-of-
the-art fault mapping tool that can be useful for hydrocarbon exploration and CO2 

storage site evaluations. 
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Fault mapping is a crucial seismic interpretation task 
that provides valuable structural information for 
prospect evaluation, seal integrity studies, and drill-
ing operations targeting reservoirs in hydrocarbon 
and green energy applications. As faults may act as 
potential migration pathways of pore-fluids or baffles 
to fluid flow, it is important to outline their spatial 
network, density, and connectivity (Sorkhabi & Tsuji 
2005; Fossen 2016; Smit et al. 2018). Furthermore, fault 
mapping and visualisation in 2D section and map 
view provide insights into the tectonic evolution of 

an area. If vertical displacements are larger than the 
seismic resolution, faults may appear as discontinui-
ties in the layered reflectivity, and their presence may 
scatter the energy and distort the seismic imaging. 
Manual interpretation of faults can be a tedious and 
time-consuming process, and their location and extent 
are not always clearly apparent in seismic data. To 
highlight these discontinuities, a standard procedure 
is to use some edge detection seismic attributes such 
as semblance (Marfurt et al. 1998), coherency (Marfurt 
et al. 1997), and variance (van Bemmel & Pepper 2000; 
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cessfully implemented and demonstrated applications 
of neural networks for fault mapping and delineation. 
A supervised learning system to map simple fault net-
works in the subsurface using raw seismic recordings 
was proposed by Araya-Polo et al. (2017). Their neural 
network model was trained and tested on 3D synthetic 
seismic data and they concluded that more complex 
fault structures were required in the synthetic data 
to enhance the mapping quality. It was demonstrated 
by Wrona et al. (2020) how cropped 2D samples with 
manually labelled faults from large 2D seismic sec-
tions from the northern North Sea could be used in a 
supervised learning framework for identifying faults 
in 2D sections. They compared two different CNN 
models: (1) a simple 2D CNN model that downsam-
ples the cropped input image and classifies it, and (2) 
a 2D U-Net model (based on the work of Long et al. 
2015; Ronneberger et al. 2015) that labels the cropped 
input image pixel-wise. Both approaches had similar 
fault mapping accuracy in the seismic section but 
differed significantly in computation time for these 
test predictions (2 hours for the simple CNN versus 
5 seconds for the U-Net).

It was demonstrated by Wu et al. (2019)  with limited 
computational resources, how a simplified version of 
the U-Net structure could accurately predict faults 

Randen et al. 2001). These attributes rely on lateral 
changes in seismic reflection (dis)continuity as well 
as alterations in the frequency content (Chopra & 
Marfurt 2007). However, a pitfall of these methods 
for fault interpretation is that these attributes also 
highlight lithological or stratigraphical facies varia-
tions and seismic noise.

In recent years, machine learning methods have 
successfully been implemented in the geoscience do-
main for a wide range of applications, such as horizon 
tracking, salt dome identification, facies classification 
and fault mapping (Dramsch 2020). The fault mapping 
challenge can generally be regarded as a basic image 
segmentation task by pixel-wise classifying the input 
seismic data as either background (seismic data) or 
fault location. The pixel dimensions correspond to the 
dimensions of the acquisition setup in terms of inline 
and crossline spacing and sample interval.

In a supervised learning framework, a convolu-
tional neural network (CNN) approach can be used to 
identify the location of faults in seismic data based on 
a synthetic training set or manual or automated fault 
picks in seismic data. Therefore, this CNN approach 
does not require the calculation of seismic attributes 
to identify the location of potential fault zones (Wu et 
al. 2019; Wrona et al. 2020). Previous studies have suc-

a) b)

Bo Area

Bo South 
Area

Fig. 1: a) Location of the Danish Central Graben and thickness map of the Sola and Tuxen formation. The Valdemar Field with 
the various Bo wells is outlined in the red rectangle (modified figure from Jakobsen et al. 2004). b) Map of the Bo and Bo South 
areas (part of the larger structure, Bo-Jens Ridge) in the Valdemar Field with Top Tuxen two-way traveltime (TWT) structure and 
relevant well locations.
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in 3D seismic data by training on synthetic data. In 
their study, the trained U-Net CNN outlines realistic 
fault interpretations in various 3D seismic surveys 
including the Netherlands F3 Block and a subduction 
zone at the Costa Rica margin. Following that work 
a fault detection machine learning competition was 
held in 2020 by the Norwegian Petroleum Directorate 
(Bormann et al. 2020). The competition used synthetic 
seismic data and non-optimal real seismic data from 
the Itchys Field located on the NW Shelf of Australia 
for training and testing different supervised learning 
models. The fault mapping results were rated by hu-
man interpreters to assess the quality of the mapping, 
and none of the competitors was given a significantly 
high score. It was suspected that the low success rate 
was related to migration artifacts remained in the 
seismic data due to sub-optimal processing that was 
used for the test phase.

Other studies have modified the CNN structure 
proposed by Wu et al. (2019) and used it as a state-of-
the-art benchmark model for automatic fault inter-
pretations trained on either synthetic data, real data 
with interpretations or a combination of the two. A 
suite of models including the U-Net CNN was used in 
a study by An et al. (2021). By applying the models on 
two real test data sets, Inner Moray Firth (UK North 
Sea sector) and Thebe Gas Field (NW Shelf of Aus-
tralia), they demonstrated that the test predictions of 
the U-Net CNN could be improved by implementing 
image augmentation methods and manually labelled 
field data in the training data. In a study by Dou et al. 
(2021), they show how a combination of 3D synthetic 
data and 2D labelled real data from the Shengli Oil-
field in China could be used in the training process 
to improve the U-Net CNN model performance and 
ability to generalise to other seismic surveys. 

In all the former cases, the U-Net CNN model seems 
in agreement with traditional fault-enhancing attrib-
utes and other proposed machine learning models, 
which indicates a good generalisation ability across 
seismic surveys of varying quality and with different 
faulting systems (Wu et al. 2019; An et al. 2021; Dou et 
al. 2021). 

In this study, we apply the open-source U-Net 
CNN (hereafter referred to as ‘CNN’) model by Wu 
et al. (2019) that has been trained on synthetic seismic 
data generated by a convolutional model with planar-
shaped faults on post-stack data from the Valdemar 
Field located in the Danish North Sea (Fig. 1a). We 
focus on Cretaceous succession comprising an upper 
and lower part. Fig. 2 shows a stratigraphic column 
covering the Cretaceous section in the Danish Central 
Graben (DCG). Whereas the Upper Cretaceous (UC) 
is regionally composed of thicker high-porosity pure 
chalk reservoir intervals, the Lower Cretaceous (LC), 
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Fig. 2: Stratigraphic column scheme of the Cretaceous succes-
sion in the Danish Central Graben adapted from van Buchem et 
al. (2018). Coloring of the key seismic horizons used throughout 
the study from Smit et al. (2021) can be seen in the right section 
of the figure.



34     ·     Bulletin of the Geological Society of Denmark

day sources of hydrocarbons (Fig. 2) (Ineson 1993; 
Ineson et al. 2003). In the DCG, rifting ceased around 
the onset of the Early Cretaceous (Møller & Rasmus-
sen 2003), but the rift-related basin morphology per-
sisted throughout the Early Cretaceous along with 
the deposition of the Cromer Knoll Group deposits 
(Vejbæk 1986).

During the Late Cretaceous and Paleogene, regional 
tectonic shortening caused basin inversion and rela-
tive uplift of former rift depocentres (Vejbæk & An-
dersen 2002; van Buchem et al. 2018). This generated 
several structural traps with Cretaceous reservoirs 
in the area.

Local structural framework

The Valdemar Field contains hydrocarbon within the 
Cretaceous successions and occurs on the crest of a 
large anticlinal fold (the Bo–Jens Ridge), which formed 
during Late Cretaceous inversion and strikes ap-
proximately North–South (Vejbæk & Andersen 2002; 
Hansen et al. 2021). Locally within the field perimeter, 
a saddle point separates two gentle structural highs 
near the wells North Jens-1 and Bo-1X at reservoir 
levels (Jakobsen et al. 2005). This configuration arose 
due to varying degrees of reactivation of, and folding 
along, rift-related faults below the reservoir (Hansen 
et al. 2021). Groups of small normal faults (some with 
offsets near the limit of seismic resolution) populate 
the crest of Bo–Jens Ridge at Cretaceous levels. These 
faults are interpreted by Hansen et al. (2021) as the 
result of a combination of outer-arc extension and 
gravitational collapse during inversion and folding. 
Fig. 1b shows the southern downflank of the south-
ern Bo–Jens Ridge with marked well locations. This 
outlines the area of interest for our study as it remains 
an immature part of the Valdemar Field.

Convolutional neural network
In this research, we use the previously trained version 
of the CNN model by Wu et al. (2019) to predict the 
faults in a 3D post-stack survey from the Valdemar 
Field based on the work of Bredesen et al. (2021). Two 
seismic processing steps are introduced for this study 
to make it suitable for the CNN fault prediction. First-
ly, the post-stack data are filtered using an automatic 
gain control (AGC) to increase the weak signals of the 
LC. The amplitudes are increased to make the CNN 
fault labelling more accurate, however, the noise will 
be amplified as well, and there is a potential risk of 
the CNN predicting faults in the noisy areas. Secondly, 
after the AGC process the seismic data are normalised 

which also contains reservoir layers, is thinner and 
more heterogeneous with marly chalks and low matrix 
permeabilities (Jakobsen et al. 2004). The fine-grained 
shale can potentially be integrated in fault zones of the 
LC succession and work as barrier to fluid flow (Fossen 
2016). Seismic interpretation and coherency studies of 
the Valdemar Field was conducted by Madsen & Britze 
(1999) as a part of the multi-institutional PRIORITY 
research programme (1997–2002) and they concluded 
that conventional fault mapping methods were insuf-
ficient to map the fault complexity of the field in the 
complete Cretaceous succession. More recently, Brede-
sen et al. (2021) performed a quantitative seismic inter-
pretation study to outline reservoir quality variations 
and to boost the resolution of the LC succession in the 
Valdemar Field. Their study showed that the seismic 
image of the LC interval was characterised by limited 
resolution and by interfering multiple energy from 
the overlying UC chalk succession. This is caused by 
the chalk succession having a higher seismic velocity 
than the LC mudstones and chalks, which generates 
scattering, interfering multiples and converted waves 
(Vidalie et al. 2012; Montazeri et al. 2018).

The objective of this study is to evaluate the per-
formance of the CNN model by Wu et al. (2019) on the 
Valdemar Field data and review the outlined faults 
by comparison to manually interpreted faults and a 
simple industrial standard workflow procedure with 
variance and intelligent ant-tracking (Pedersen et al. 
2002). Firstly, we review the structural geology in a 
regional and local setting. Secondly, we outline how 
the CNN model and its training process work and 
address the data conditioning steps of the seismic 
data from the Valdemar Field. Finally, we analyse the 
results and discuss some of the shortcomings of the 
study as well as delineate potential improvements.

Geological background
Regional framework

The Valdemar Field is located in the central part of the 
DCG, occurring in the westernmost part of the Danish 
offshore sector (Fig. 1a). The DCG comprises a complex 
of fault-bounded basins and highs and is part of the 
system of failed rifts that spans the North Sea area 
(Ziegler 1990). During the Late Jurassic, tectonic exten-
sion generated a series of roughly NW–SE-trending 
half-graben bounded by large normal faults in the 
area (Møller & Rasmussen 2003). As a result of Late 
Jurassic rifting, subsidence of these basins caused the 
accumulation of thick successions of largely marine 
shale, including organic-rich units that are modern-
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The visual effects of the two-step conditioning on the 
seismic data are shown at Fig. 3. The AGC-filtered 
seismic will be used for all the following figures to 

by subtraction of its mean value and division by its 
standard deviation to make the amplitude ranges con-
sistent with the synthetic training from Wu et al. (2019). 
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Fig. 3: a) Map of the Tuxen horizon in two-way traveltime (TWT) in the Valdemar Field with well locations. The dashed red and 
blue lines indicate the crossline and inline sections shown in b) and c), respectively.
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of (1.6km×3.2km×512ms) by 12.5 meters inline and 
crossline spacing (considering every second crossline) 
and 4ms sample interval. The workflow for generating 
the synthetic data originates from Wu & Hale (2016). 
Here, they use a series of reflections between -1 and 
1 includes folding structures and planar shearing to 
mimic true geological variations. Sequentially, planar 
faulting is generated in the cubes with dips ranging 
from 65˚-85 ,̊ and the perturbed reflection cubes are 
convolved with a Ricker wavelet with pre-defined 
varying frequency content. Lastly, Gaussian noise is 
added to the synthetic cube yielding various signal-
to-noise ratios. Compared to real seismic data, the 
synthetic data are convenient to use for CNN model 
training as they allow better control on the ground 
truth fault labels and thus avoid marking errors based 
on misinterpretations. The ground truth fault labels 
are located in binary cubes (zeros indicate non-fault, 
and ones indicate faults) of the same dimensions as the 
seismic cube. Moreover, using synthetic data render 
possible a great quantity of training data that can be 
difficult to obtain from real seismic data. To assess 
the similarity between the synthetic training data 
and the Valdemar Field data, Fig. 4a and 4b shows 
a training data slice and a cropped section of the 

improve the visualisation of the LC succession. Note 
that inline and crossline sections shown throughout 
the study will be influenced by a vertical exaggera-
tion. The European polarity convention shown in 
Fig. 3 will be used for all seismic data displayed in 
the study. The main horizons of the LC used in this 
study originate from the regional interpretation study 
by Smit et al. (2021). 

A detailed description of the mathematics and 
architecture of the CNN model and its U-Net struc-
ture is beyond the scope of this study, and the reader 
is referred to the papers by Ronneberger et al. (2015) 
and Long et al. (2015). The main framework of the U-
Net applied in this study is composed of two phases. 
Firstly, the 3D seismic volume is spatially reduced in 
steps to create a so-called feature vector. The feature 
vector contains filtered information from the seismic 
cubes through a series of matrix operations. Secondly, 
the downsampling process is followed by an upscaling 
operation, and the final feature layer holds extracted 
information from the seismic cube in terms of a fault 
cube of the same size as the original 3D seismic input.

The CNN model is trained using 200 syn-
thetic seismic and fault cubes of dimensions 
(128×128×128) elements resembling seismic volumes 
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Fig. 4: Samples of crossline sections 
of a) synthetic training data and 
b) Valdemar Field data from the 
Cretaceous section (test data).  The 
frequency spectrum of all 200 3D 
training cubes and the Valdemar test 
data is shown in c), and their wavelets 
are shown in d). 
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in the training data. 
The CNN training involves passing all the synthetic 

seismic cubes through the U-Net structure, estimating 
the error between the predicted fault labels and the 
ground truth faults, and adjusting the weights of the 
CNN accordingly. Hence, the training process can 
be regarded as an optimisation process that aims to 
minimise the difference between the predicted fault 
label and the ground truth fault label. The end result 
is a cube with an assigned CNN fault probability 
for each pixel. Fig. 5 shows a series of slices from the 

conditioned Valdemar test data from the Cretaceous 
section, respectively. Some visual discrepancies are 
observed between the training and test sample as 
the Valdemar data seems more blurred and distorted 
than the synthetic sample. This could be caused by 
noise left in the seismic volume after processing from 
e.g. interfering multiples.  Nonetheless, Fig. 4c and 4d 
show the frequencies and wavelets of all training data 
3D cubes versus the Valdemar Field Cretaceous test 
data, respectively, and indicate that the frequencies 
and wavelet form of the latter are well-represented 
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Fig. 5: a) Two-way traveltime (TWT), b) 
crossline and c) inline sections of a synthetic 
validation seismic cube in left column and 
predicted fault probability by the trained 
CNN superimposed in right column.



38     ·     Bulletin of the Geological Society of Denmark

be used to compare with the CNN model predictions.
The post-stack seismic volume prior to the AGC-

filtering as represented in upper plots of Fig. 3b and 3c 
is used as input for the variance attribute computation 
as the seismic attribute calculation does not require 
any pre-conditioning. From the variance attribute, 
the ant-tracking filter is applied. The details of the 
parameters for the variance and ant-tracking features 
are listed in Table 1.

Manual interpretations
A manual fault interpretation on the corresponding 
area from a regional 3D seismic volume (for details 
on this dataset, see Hansen et al. 2021) will be used to 
show what an interpreter with structural geological 
expertise would map in the area. It should be noted 
that the interpretation was performed on a depth-
converted seismic volume that intersects with the 
Valdemar Field using both inlines, crosslines and 
variance maps of the Top Chalk, Base Chalk and Base 
Cretaceous Unconformity (BCU) horizons (Fig. 2). 
The fault offsets in the study area are relatively small 
compared to the vertical seismic resolution, which is 
around 30 meters for the section (Bredesen et al. 2021), 
and many show offsets that are near the limit of ro-
bust manual interpretation. It should be stated clearly 
that we do not consider the manual interpretation as 
a ground truth, but as an additional binary fault pre-
diction attribute based on standard seismic attributes. 
The seismic attribute calculations and interpretations 
were achieved using another commercial software 
(Paleoscan) than what was used for the variance and 
ant-tracking features in this study. However, no major 
discrepancies are suspected, and the provided vari-
ance attribute as listed in Table 1 should be satisfying 
for the comparison purpose. In order to analyse the 
results, the depth of picked faults has been converted 
to two-way traveltime via the same velocity model that 
was used for generating the depth-converted volume.

CNN model results and 
comparison
A suite of the key Cretaceous horizons with super-
imposed CNN fault predictions can be seen in the 
following Figures: Top Chalk in Fig. 6, Base Chalk in 
Fig. 7, Sola horizon in Fig. 8, Tuxen horizon in Fig. 9, 
Valhall horizon in Fig. 10, and BCU horizon in Fig. 11.

Note that the seismic sections in the plots have 
slightly been brightened to contrast the superimposed 

synthetic validation cube, which was not a part of 
the training process, with the fault predictions from 
the trained CNN model. We chose to show the > 90% 
of CNN fault probability throughout the study with 
the intention of ensuring a high level of confidence in 
the potential faults displayed. It should be stated that 
the CNN fault probability does not reflect true fault 
probability, but indicates the CNN model’s posterior 
likelihood of a fault being present in a given dataset 
based on the learning and extracted features from the 
synthetic training data. Based on the synthetic sam-
ples used for training, the CNN model is applied to 
the conditioned seismic data from the Valdemar Field.

Variance and ant-tracking
The variance seismic attribute is a measure of spatial 
discontinuity. It is known as an edge detection pro-
cess as it represents the lateral variability in a defined 
sample interval. The size of the sample interval deter-
mines the detail of fault features to be resolved, and 
the method is sensitive to both waveform and lateral 
changes of the reflection amplitude (Chopra & Mar-
furt 2007). For the interpreter, time slices of a variance 
volume or a similar edge attribute can be a great help 
when manually picking faults from vertical seismic 
sections. This makes it easier to stick to the same 
fault trace while scrolling through the data several 
inlines or crosslines at a time. Moreover, a so-called 
ant-tracking filter (Pedersen et al. 2002) can be applied 
to the variance attribute that further enhances surface-
like features by a pre-defined set of orientation ranges 
and step sizes. This allows extracting features that 
resemble those of faults based on the variance while 
limiting the amount of random noise in the attribute. 
Both the variance attribute and ant-tracking filter will 

Table 1. Input parameters of the variance and ant-tracking fea-
tures. The Petrel E&P Software is used for the computations of 
the attributes.

Variance input parameters

IL range
XL range
Vertical smoothing 
Window range 
Dip correction  

3
3
15 samples (60 ms)
1 sample (4 ms)
off

Ant-tracking input parameters

Ant mode
Initial ant boundary
Ant-track deviation
Ant step size
Illegal steps allowed
Legal steps required
Stop criteria (%)

Passive
7
2
3
1
3
5
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maps. According to the fault strike diagrams of both 
the manual interpretation and the CNN models, a 
general NE–SW-trend is dominating throughout the 

features. Both the manual interpretation and the 
CNN model are accompanied by a strike fault dia-
gram to show the overall fault trends for the shown 

Fig. 6: a) Map of the Top Chalk horizon in two-way traveltime (ms). b) Averaged seismic amplitudes in a ± 5 ms window around 
the horizon. c) Variance attribute extracted along the horizon. d) CNN fault predictions (red colouring) and e) manual fault inter-
pretations (black lines) along the horizon superimposed on the ± 5 ms seismic window with fault strike diagrams. f) CNN fault 
predictions superimposed with manual fault interpretations.
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They are generally in agreement with the variance 
maps along the same horizons, in which relatively 
clear fault patterns are evident (e.g. Fig. 7 and Fig. 11). 

Cretaceous section in the Valdemar Field. The faults 
picked by the CNN model pose detailed and realis-
tic interpretations when viewed on horizon maps. 

Fig. 7: a) Map of the Base Chalk horizon in two-way traveltime (ms). b) Averaged seismic amplitudes in a ± 5 ms window around 
the horizon. c) Variance attribute extracted along the horizon. d) CNN fault predictions (red colouring) and e) manual fault 
interpretations (black lines) along the horizon superimposed on the ± 5 ms seismic window with fault strike diagrams. f) CNN 
fault predictions superimposed with manual fault interpretations.
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Tuxen and Top Valhall horzons (Fig. 9 and Fig. 10). It 
is suspected that this is related to interpretation was 
carried out using only the Top Chalk, Base Chalk and 

They also coincide well with the manually interpreted 
faults when viewed in this manner. A limited amount 
of manually interpreted faults are observed for the Top 

Fig. 8: a) Map of the Sola horizon in two-way traveltime (ms). b) Averaged seismic amplitudes in a ± 5 ms window around the 
horizon. c) Variance attribute extracted along the horizon. d) CNN fault predictions (red colouring) and e) manual fault inter-
pretations (black lines) along the horizon superimposed on the ± 5 ms seismic window with fault strike diagrams. f) CNN fault 
predictions superimposed with manual fault interpretations.
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that surpasses that of the manual interpreter who only 
picks the faults from a fraction of the vertical seismic 
sections. Specifically, the close overlaps of individual 

BCU horizons, and therefore lacking details around 
the Tuxen and Valhall section of the survey. The CNN 
model provides a level of detail in the picked faults 

Fig. 9: a) Map of the Tuxen horizon in two-way traveltime (ms). b) Averaged seismic amplitudes in a ± 5 ms window around the 
horizon. c) Variance attribute extracted along the horizon. d) CNN fault predictions (red colouring) and e) manual fault inter-
pretations (black lines) along the horizon superimposed on the ± 5 ms seismic window with fault strike diagrams. f) CNN fault 
predictions superimposed with manual fault interpretations.
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manual interpreter would mostly pick only single 
linear fault segments across them. An example of this 
can be seen in (marked with blue circle in Fig. 11f) 

faults and jogs in fault traces (caused by the merging 
of smaller fault segments during growth) are picked 
out nicely with good lateral consistency, whereas the 

Fig. 10: a) Map of the Valhall horizon in two-way traveltime (ms). b) Averaged seismic amplitudes in a ± 5 ms window around 
the horizon. c) Variance attribute extracted along the horizon. d) CNN fault predictions (red colouring) and e) manual fault 
interpretations (black lines) along the horizon superimposed on the ± 5 ms seismic window with fault strike diagrams. f) CNN 
fault predictions superimposed with manual fault interpretations.
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detail by the CNN model, whereas neither the vari-
ance attribute nor the manual interpreter picks up 

just below well Bo-4X. Here, the jogs where two faults 
have connected during lateral growth is mapped in 

Fig. 11: a) Map of the Base Cretaceous Unconformity (BCU) horizon in two-way traveltime (ms). b) Averaged seismic amplitudes 
in a ± 5 ms window around the horizon. c) Variance attribute extracted along the horizon. d) CNN fault predictions (red colour-
ing) and e) manual fault interpretations (black lines) along the horizon superimposed on the ± 5 ms seismic window with fault 
strike diagrams. f) CNN fault predictions superimposed with manual fault interpretations. The blue circle in f) highlights two jogs 
where faults have connected during lateral growth that are not represented in the variance attribute nor the manual interpretation. 
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Discussion
The pre-trained CNN model from Wu et al. (2019) was 
used without any modifications of the model prior to 
applying it to the seismic data. It is important to  have 
a healthy portion of scepticism about the training 
data that is put into the CNN model before making 
predictions in seismic data. This is due to the fact that 
the CNN model was trained on synthetic data, which 
raises a concern of to what extent the synthetic faults 
and seismic data represent the structural geology 
and seismic signals in the investigated area. It was 
suspected that the distortions observed in the Creta-
ceous succession of the Valdemar data originates from 
a combination of low signal-to-noise ratio and poor 
continuity of reflection events (Bredesen et al. 2021). 
Tailoring the synthetic data to resemble the seismic 
data from the Valdemar Field by e.g. using a statistical 
or deterministic wavelet from the seismic data instead 
of a Ricker wavelet and modifying the signal-to-noise 
ratio by adding or removing Gaussian noise could 
alter the fault predictions of the CNN model. It was 
seen in Fig. 4 that the wavelet and frequencies of the 
Valdemar data was well-represented in the training 
data. However, the cropped sections in Fig. 4a and 4b 
showed some visual dissimilarities with as the Valde-
mar data was more blurred and with poor reflection 
continuity. Data augmentation could be applied to 
make the training data more similar to the test data 
by implementing e.g. kernel filtering, resizing and 
rescaling and elastic (grid) deformation as a part of 
the training process. In the study by An et al. (2021), 
they conclude that vertical flip, emboss and elastic 
deformation substantially improves performance of 
the proposed machine learning models. The effect of 
the augmentation could be investigated by applying 
the CNN on the augmented data and, when trained, 
testing the new model on the Valdemar data and com-
pare with the predictions presented in this research.

The pre-trained CNN has previously been applied 
on various seismic dataset representing different fault-
ing systems with realistic fault predictions in agree-
ment with other fault-enhancing seismic attributes 
and machine learning models, which indicates a good 
generalisation (Wu et al. 2019; An et al. 2021; Dou et al. 
2021). However, it is questionable to what extent the 
trained CNN model is able to predict thrust and listric 
faults with low angle dips since these were not part 
of the training dataset. Low-angle faults were repre-
sented in the manual interpretation (Fig. 12a and 13a) 
whereas the CNN predicted faults were steeper (blue 
circles in Fig. 12c and 13c). The planar faulting in the 
synthetic data originating from Wu & Hale (2016) have 
dips ranging from 65 -̊85˚  corresponding to the seismic 
validation cube in Fig. 5. The high dip of the faults in 

this feature. Displayed upon stratigraphy-consistent 
horizons, the faults predicted by CNN appear realistic 
and overall in accordance with the manual interpreta-
tion and the seismic variance attribute.

Figures 12 and 13 show the crossline and inline sec-
tions displayed in Fig. 3 with superimposed results. 
The fault plots are accompanied by a dip attribute. It 
should be noted that the dip plots do not reflect the 
true angles due to the vertical exaggeration in the 
vertical sections. For simple planar fault segments 
in especially the Chalk Group (Fig. 2), the manual 
interpretation and the CNN model results seem to 
be in good agreement (green circles in Fig. 12c and 
Fig. 13c). However, some discrepancies are appar-
ent between the dip angles of the CNN predictions 
and manual interpretations. In most cases, the CNN 
model predicts faults with larger dips than those of 
the manually interpreted faults, and less consistent, 
i.e. the CNN modelled faults often appear sinuous 
in the vertical sections (black circles in Fig. 12c and 
Fig. 13c). The most apparent detail in the CNN fault 
predictions and ant-tracking attribute of the crossline 
section (Fig. 12f) is in the lower-right region around 
the BCU horizon (marked with red circle). Here, the 
CNN predicts large areas to have a high probability of 
being faulted, and the same areas have high variance 
values (red circle in Fig. 13d). Considering the loca-
tion of the crossline section (Fig. 3a, red dashed line), 
a WNW-ESE striking fault that runs sub-parallel to 
and intersects with the seismic section around Bo-1X 
has been outlined both manually and by CNN pre-
diction at the BCU level (marked with purple arrow 
in Fig. 11f). Therefore, the faulting anomaly at BCU 
appears more as a plane rather than a line segment 
in the vertical section.

The ant-tracking filter agrees with the CNN model 
predictions in most cases as shown in Fig. 12f and 
Fig. 13f suggesting that the two methods track the 
same features in the seismic signals. Nonetheless, in 
the fault interpretation task of the Valdemar Field, 
the applied variance and ant-tracking filter can be 
problematic due to the ambiguity in the orientations 
of the fault features as well as outlining the extents 
of individual faults. A default set of input parameters 
was chosen for the variance and ant-tracking (Table 
1), which shows the need to generate several iterations 
of variance and ant-tracking combinations in a trial 
and error fashion ideally limiting noise artefacts while 
preserving fault features. The CNN model does not 
require similar manual tuning as it is a part of the 
training process.
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noise, but the variance and ant-tracking attributes are 
to some extent in accordance with the CNN proposed 
fault patterns. Therefore, the CNN model should be 
treated as an additional fault interpretation tool for 
the interpreter to quality check in a critical manner. 
Identifying overlooked faults or adjusting previously 
interpreted faults may impact the fault mechanism that 
could influence the fluid migration in the Cretaceous 
succession (Smit et al. 2018). With decreasing commer-
cial hydrocarbon exploration and production activities 
from the DCG, the proposed supervised learning ap-
proach to fault mapping and the results from this work 
can serve a purpose for prospect evaluation studies of 
exploiting the chalk fields for geological CO2 storage 
(Frykman et al. 2009; Suicmez, 2019; Bonto et al. 2021).

Conclusion
A pre-trained convolution neural network is applied 
to the Cretaceous succession in the Valdemar Field, 
Danish North Sea, for improved fault predictions. 
The predicted faults show good consistency with the 
standard seismic attributes used for fault predictions 
and a manual interpretation. However, a comparison 
with the manual interpretations in vertical seismic 
sections show some fault geometry discrepancies in 
terms of dip angles and extents. As opposed to the 
manual interpretation, the neural network method 
suggest steeper and more curved fault geometries in 
accordance with the seismic variance and ant-tracking 
attribute. This sheds new light on the existing structural 
model and structural geological evolution in parts of 
the study area. The steeper dip angles proposed by the 
neural network could however be an artefact from the 
training data being composed of high-dipping planar 
faults. Moreover, like regular seismic attributes, the 
neural network is sensitive to seismic noise, which may 
distort the fault predictions. Hence, the method should 
be treated as an additional interpretation tool that 
needs quality checking. The method can yield valuable 
implications in reservoir characterisation and cap-rock 
integrity assessments for hydrocarbon exploration and 
CO2 storage site evaluations.
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the training data suggests that the CNN model has a 
bias towards predicting steeper faults limiting its abil-
ity to detect certain low-angle faults like thrust faults 
(Fossen 2016). One approach to test the hypothesis 
would be to apply the CNN model to a synthetic vali-
dation dataset with low-angle faults. Nonetheless, like 
a supervised learning approach, such as predicting 
faults with a CNN trained on synthetic fault dataset, 
the interpreter carries out the work with a given tec-
tonic model in mind, which highlights the substantial 
degree of subjectivity and prior assumptions involved 
in manual seismic interpretation (Bond et al. 2012).

Different procedures exist that exploits a trained 
model and alter its learning towards a similar problem. 
A great number of fault attributes could be used in 
comparison to the CNN model results, but we chose 
some familiar structural attributes, namely variance 
(Marfurt et al. 1998) and ant-tracking (Pedersen et al. 
2002). Other studies have utilised seismic attributes to 
guide fault modelling using supervised learning. Di 
et al. (2017) demonstrated how fault detection based 
on multi-attribute support vector machine classifi-
cation and guided by manual interpretations could 
map faults in a 3D seismic cube. Such an approach 
could be implemented in a CNN model workflow, 
but the computational cost would be of concern due 
to the large increase of input data. In terms of using 
manual interpretations, Wrona et al. (2020) and An et 
al. (2021) demonstrated how manually labelled data 
could be used for fault predictions as mentioned in 
the introduction section. With regards to the chal-
lenge with limited seismic data quality, Cunha et al. 
(2020) demonstrated how transfer learning from a 
pre-trained neural network could utilise the learning 
obtained from synthetic seismic data into real data that 
significantly improved the overall scoring metrics for 
the fault predictions. Using transfer learning could 
potentially improve the fault mapping quality of the 
investigated area in this study. 

The CNN model has provided new fault details in 
the Valdemar Field that may serve as an important 
input into building a robust static model or flow 
model. Moreover, due to the probability feature, the 
CNN model fault predictions are easier to interpret 
than the variance and ant-tracking attributes. The 
observed disagreements between the geometries of 
the fault systems in the CNN results and the manual 
interpretation shown in the vertical sections motivate 
for a re-interpretation of structural features occurring 
within the Cretaceous succession in Valdemar Field at 
a finer scale. Here, the CNN model predicts faults that 
are generally planar to slightly curved in nature, which 
suggests that the faults were deformed after their initial 
formation. These predictions could be erroneous due to 
the bias of steep faults in the training data and seismic 
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