Conodonts and brachiopods from the Volkhov Stage (Lower Ordovician) microbial mud mound at Putilovo Quarry, north-western Russia

TATIANA TOLMACHEVA, PETR FEDOROV & EVA EGERQUIST

Microbially mediated clay mud mounds are widely developed in the Lower Ordovician succession east of St. Petersburg (Russia) and are associated with a diverse and abundant fauna of brachiopods, ostracodes, echinoderms, bryozoans and conodonts. The lithology of one such mud mound in Putilovo Quarry has previously been studied, but the faunas associated with the mounds have not been investigated to date. Clay lenses in the Putilovo mud mound yield conodont assemblages belonging to the *Baltoniodus triangularis* and lowermost part of the *Paroistodus originalis* zones and these stratigraphical intervals are much thicker in the mud mound than in the coeval Lower Ordovician succession lateral to the mound. The compositions of the conodont and brachiopod assemblages are generally the same in the mud mound as in contemporaneous beds. The occurrence of relatively fewer conodont elements in the mud mound than in the surrounding successions probably indicates the higher rate of accumulation of the mud mound clays. Juvenile brachiopods are more numerous in the clays of the mud mound than outside the build-up, supporting the hypothesis that the mounds included ecologically stressed environments.

Key words: Microbial mud mounds, conodonts, brachiopods, Lower Ordovician, Russia.

Microbial mud mounds with a clay core were discovered in the upper part of the Lower Ordovician of the East Baltic at the beginning of the last century, but they have only recently been studied and described in detail (Dronov & Fedorov 1994; Fedorov & Dronov 1998; Fedorov *et al.* 1998; Fedorov 1999). More than 15 mud mounds of different sizes are now known from quarries and natural outcrops along the Baltic-Ladoga Klint from the Narva to the Syas rivers in the vicinity of St. Petersburg and in Estonia. The smallest mud mounds occur as clay lenses, not more than 1 m across, covered by a micritic crust, whereas the largest Simonkovo mud mound is approximately 250–350 m wide, 4–5 m high, and has a complex inner structure. One of the best exposed of the large mud mounds is located in the central part of Putilovo Quarry (Fig. 1).

Lamination in the clays and sparitic layers in the Putilovo mud mound indicates that this build-up, like other similar structures in the region, was formed as a result of biotic activity (Fedorov 2003). The clay sediments of the mud mound contain a diverse and abundant fauna of brachiopods, ostracodes, echinoderms, and bryozoans together with rarer taxa such as conodonts and graptolites. The architecture of the Putilovo mud mound was described in detail by Fedorov *et al.* (1998); however, the faunas have not previously been investigated in detail. This paper compares the composition of brachiopod and conodont assemblages in the mound with that elsewhere in the adjacent Lower Ordovician successions.
Geological settings and lithology of the mud mound

Putilovo Quarry is one of the classic Lower Ordovician localities in the vicinity of St. Petersburg where the lithostratigraphy of the Volkhow Stage is well documented (Dronov et al. 1995; Dronov et al. 1996; Dronov & Fedorov 1995). The base of the Volkhow Stage is marked by a distinctive hardground, the ‘Steklo’ surface, which is emphasized by borings and glauconitic enrichment. The lower part of the Volkhow Stage (Dikari Member) has a thickness of approximately 1.4 m, and includes eleven recognizable lime-

Fig. 1. Schematic map of the East Baltic with the position of Putilovo quarry. Sketch of the quarry shows the location of the mud mound.

Fig. 2. Distribution of selected conodonts and brachiopods in the Lower – Middle Volkhow Stage of the Putilovo Quarry section. Bold lines mark the intervals of dominance of particular species.
stone beds. The Middle Volkov (Zheltjak Member) is approximately 1.7 m thick and is composed of seven units of intercalated clays and limestones (Dronov & Fedorov 1995; Fig. 2). The Lower–Middle Volkov interval encompasses three conodont zones: Baltoniodus triangularis, Baltoniodus navis and Paroistodus originalis (Fig. 2).

The entire Volkov sequence is remarkably constant in thickness, clay content and other lithological features, and extends for several hundred km along the Baltic-Ladoga Klint. In contrast, the mud mounds are associated with very rapid lithological changes, indicated by a significant increase in clay content and the upward displacement of some limestone beds. The area affected by the mud mound is marked by the appearance of a thin clay layer on the ‘Steklo’ surface and the increased thickness of the lowermost bed of the Volkov Stage (Zeljenyj Unit), which can be observed for a distance of 100–150 m outside the mud mound. In the surrounding successions, the Zeljenyj Unit usually is not more than 7 cm thick, whereas close to the mud mound it becomes as thick as 25 cm.

The mud mound is more or less isometric in plan view, but the north-eastern part of the structure is not exposed (Fig. 1). A detailed lithological description of this mud mound was given by Fedorov et al. (1998) and only a brief description is provided here. The mud mound is composed of two clay lenses with the lower lens situated on the ‘Steklo’ hardground surface and laterally more extensive than the upper one (Fig. 3).

The peripheral part of the mud mound is composed of two micritic layers and the lower clay lens that wedges into the more typical ‘standard’ succession of the surrounding Dikari limestones. In the exposed part of the central structure, the lower clay lens is approximately 1.5 m thick. The upper part of this clay

Fig. 3. Cross section of the Putilovo mud mound with the location of sections and sampled levels.
lens contains numerous, lens-shaped limestone pebbles which are more abundant towards the edge of the structure. A 15 cm thick layer of striped sparites can be traced through all the exposed central part of the lower clay lens dividing it into two parts. The clay below the sparite layer is violet-grey and contains numerous small glauconite grains, and minute brachiopod and ostracode valves, while the clay above the sparite layer is green and enriched with calcareous fossil fragments. The thin layer above the sparites contains abundant graptolite detritus with identifiable fragments of *Expansograptus hirundo* (T. Koren’, personal communication). The upper part of the clay lens is bioturbated, whereas the lower part is weakly laminated.

The upper clay lens is significantly smaller in overall size and is mainly restricted to the central part of the mud mound (Fig. 3, section 17). The clay contains abundant graptolite detritus with identifiable fragments of *Expansograptus hirundo* (T. Koren’, personal communication). The upper part of the clay lens is bioturbated, whereas the lower part is weakly laminated.

Methods and material

Six cross sections through the exposed part of the mud mound were sampled for conodonts and rhynchonelliformean brachiopods (Fig. 3). The stratigraphical distribution and numerical composition of the assemblages are given in Tables 1 and 2. Brachiopods from the upper part of the Dikari Member and lower part of the Zheltjaki Member of the standard successions...
outside the mud mound were additionally sampled and studied. Two samples (18-A and 17-A from the upper part of the lower clay lens and from the upper clay lens respectively) were used for evaluation of the bulk composition of the fossil assemblage, including bryozoans, echinoderms and ostracodes. These two samples were processed by the method proposed for estimation of faunal diversity in clays (Tolmacheva et al. 2001). The content of bioclasts per 100 g of sediment was used as a measurement of the relative abundance of different faunas in the two clay lenses.

The distribution of conodonts and brachiopods in the successions of the Hunneberg and Volkov stages of the Putilovo Quarry as well as the numerical composition of their assemblages have been partly presented in other papers (Egerquist 1999; Tolmacheva et al. 2001). Here, these data are used to compare the fossil assemblages in the surrounding Lower Ordovician strata with the assemblages from the coeval successions of the mud mound.

Biostratigraphic correlation of the mud mound and the surrounding deposits of the Volkov Stage

The Putilovo mud mound was formed during the B. triangularis, B. navis and the beginning of P. originalis biozones (Fig. 4; Table 1). However, the thickness of the zones and therefore the rates of sedimentation of

| Section numbers | Sample numbers | Drepanoistodus forcipatus | Drepanoistodus cf. D. basiovalis | Oistodus lanceolatus | Oistodus longibasis | Protopanderodon rectus | Decurciconus peselephantis | Periodon bifidum | Baltoniodus triangulatus | Baltoniodus navis | Trapezognathus quadrangularum | Trapezognathus sp. | Microzarkodina flabellum | Microzarkodina parva | Microzarkodina originalis | Trapezogoniulus brevibasis | Scalpelloderus latus | Others | Total |
|----------------|----------------|---------------------------|----------------------------------|---------------------|----------------------|-------------------------|----------------------------|----------------|--------------------------|----------------|-----------------------------|----------------|-----------------------------|-----------------|-----------------------------|------------------|--------------------------|
| 13 | 5 | 7 | 1 | 1 | 48 | 2 | 1 | 37 | 34 | 47 | 14 | | | | | | 192 |
| 13 | 6 | 32 | 2 | 2 | 8 | 24 | 2 | 14 | 7 | 26 | 2 | 1 | | | | | 120 |
| 17 | 11 | 32 | 15 | | 30 | 32 | 18 | 25 | 1 | 1 | | | | | | | 154 |
| 17 | 8 | 43 | P. originalis | Biozone | 4 | 1 | 1 | 6 | 26 | 37 | 9 | 42 | 2 | | | | 166 |
| 17 | A | 44 | | | 11 | 62 | 5 | 36 | 1 | 163 |
| 17 | 7 | 52 | | | 21 | 10 | 12 | 33 | 135 |
| 17 | 6 | 29 | | | 8 | 2 | 1 | 9 | 1 | 15 | 2 | 1 | | | 68 |
| 17 | 4 | 29 | | | 1 | 4 | 1 | 9 | 7 | 9 | | | | | 60 |
| 18 | 17 | 107 | 25 | 1 | 9 | 5 | 3 | 1 | 150 |
| 18 | A | 165 | 25 | 1 | 7 | 3 | 1 | | 202 |
| 17 | 1 | 126 | 0 | 1 | 15 | 1 | 5 | 1 | 251 |
| 12 | 3 | 127 | 0 | 6 | 32 | 31 | | | 137 |
| 13 | 3 | 120 | 9 | 1 | 6 | 1 | 3 | 1 | 141 |
| 10 | 4 | 117 | 16 | 1 | 1 | 29 | 4 | 1 | 171 |
| 12 | 1 | 94 | 12 | 1 | 10 | 1 | 2 | 1 | 122 |
| 13 | 2 | 80 | 4 | 1 | 1 | 11 | 3 | 1 | 102 |
| 10 | 3 | 156 | 0 | 10 | 5 | | | | 171 |
| 13 | 1 | 185 | 0 | 2 | 2 | 9 | 1 | 8 | 210 |
| 11 | 2 | 75 | 10 | 2 | 8 | 8 | 1 | | 104 |
| 10 | 2 | 124 | 0 | 1 | 1 | 10 | 4 | | 140 |
| 10 | 1 | 117 | 6 | 1 | 4 | 1 | 2 | 17 | 149 |
| 11 | 1 | 106 | 15 | 2 | 1 | 6 | 11 | 2 | 143 |

Table 1. Conodont element distribution in the samples from the Putilovo mud mound.
the mud mound and surrounding deposits in Putilovo Quarry are markedly different.

In the standard section, the *B. triangularis* Zone has been identified only in the upper 2–3 centimetres of the Zeljenyj Unit. The same zone in the mud mound is up to 1.5 m thick in the central part and comprises the entire lower clay lens. The conodont assemblage of the *B. triangularis* Zone is strongly dominated by *Drepanoistodus* species, which constitute more than 80% of the assemblage. The relative abundance of *Protopanderodus rectus* and *Periodon flabellum* varies significantly through the clay lens (16–10% and 10–5% respectively), but does not reveal any obvious structure-related trend.

In the standard section in Putilovo Quarry the *B. navis* Biozone has a thickness of 1.2 m and comprises almost all the Volklov part of the Dikari Member with the exception of the lowermost Zeljenyj Unit and the two uppermost limestone units. However, the thickness of the *B. navis* Biozone gradually decreases to 0.5 m in the central part of the mud mound, due to the reduction of the lower part of the zone.

The lower boundary of *P. originalis* Biozone in the Putilovo Quarry section is based on the increase in abundance of *P. originalis*. The first appearance of *Triangulodus brevibasis*, or its consistent occurrence in the medium-size samples, is widely used for recognition of the lower boundary of *P. originalis* in other parts of Baltoscandia (Löfgren 1978, 1995). However, in the Putilovo Quarry section this taxon appears below the acme of *P. originalis* in the middle part of the Dikari Member and very gradually increases its abundance through the section such that it is impossible to choose any level of critical significance. The increasing abundance of *P. originalis* in the uppermost layer of the Dikari Member (Butok Unit) coincides with higher proportions of *Drepanoistodus basiovalis*. In the overlying beds of the Zheltjaki Member *D. basiovalis* strongly dominates over *Drepanoistodus forceps* (Fig. 2).

The conodont assemblages from the upper clay lens of the Putilovo mud mound comprising *T. brevibasis*, abundant *D. basiovalis* and *D. forceps*, correspond well to the assemblage composition of the uppermost bed of the Dikari Member outside the mud mound. Here this interval has a thickness of approximately 20 cm
whereas the upper clay lens of the mud mound is more than 1.2 m thick. Limestones overlying the mud mound contain Microzarkodina parva indicating the middle part of the P. originalis Biozone.

In the standard Putilovo succession outside the mud mound, the brachiopod genus Productorthis outnumbered Paurorthis in the lowermost part of the P. originalis Biozone (Bratvennik Unit), whereas in the overlying bed (Butok Unit), Paurorthis is the most abundant of these two genera. Considering the lateral invariability of dominance of particular taxa in the same bed over several tens of meters (Tolmacheva et al. 2001) or even kilometres, dominating taxa in the mud mound assemblages are assumed to be the same as in the surrounding contemporary clays. Calculations of the brachiopods in section 17 (Table 2) suggest, that the upper clay lens of the mud mound, with a dominance of Productorthis over Paurorthis, correlates with the deposits below the Butok Unit. This correlation, however, is not firmly confirmed by sedimentological evidence and the possibility that environmental stress during deposition of the mud mound could produce heterogeneity in the brachiopod communities should not be neglected.

Composition of fossil assemblages in the mud mound

In microbial build-ups, the micro and macro faunas are usually preserved as autochthonous inhabitants and dwellers on ancient mats or as allochthonous elements (mostly planktonic) (Seong-Joo & Golubic 1999; Morris et al. 1997). The fossil assemblages of the Putilovo mud mound comprise all components of the surrounding Lower Ordovician fauna including conodonts, brachiopods, ostracodes, echinoderms, and bryozoans. Conodonts, being part of the nektic fauna, represent the allochthonous elements in the mud mound, whereas the benthic brachiopods, echinoderms, ostracodes and bryozoans represent the autochthonous fauna. Echinoderms are the most abundant taxon in the sparitic lenses and flanks of the mud mound, and a strong enrichment of crinoids, as well as the appearance of crinoidal sparites in the ordinary limestone beds, are well-known indications of mud mound proximity. Ostracodes probably have more complicated preferences since their numbers differ significantly in the mud mound samples as well as through the whole Putilovo Lower Ordovician section (Tolmacheva et al. in press). A comparison of the fossil composition between the two clay lenses in the mud mound shows an increase in sessile organisms such as bryozoans and echinoderms upwards through the sequence. Both of these taxa are almost four times as abundant in the upper clay lens than in the lower one. The ostracodes show an opposite trend, with 180 ostracode specimens per 100 g of sample in the lower clay lens, and only 10 specimens per 100 g in the upper clay.

Brachiopods

The abundance of brachiopods is more or less equal in the two clay lenses. The composition of the brachiopod assemblage in clay lenses does not differ much from that in the clays of the surrounding strata, although in the lower clay lens (B. triangularis Biozone) comparison is not possible due to lack of coeval strata in the area. The only obvious difference is the larger number of juveniles in the clay lenses. Over 50% of the brachiopods in the mud mound represent juveniles, whereas the surrounding clays usually do not yield more than 20% juveniles.

The mud mound is dominated by the genus Raphorthis (most of them probably belonging to a new species) with a relative abundance of about 90% in the basal part of the lower clay lens and slightly decreasing numbers upwards in the sequence. Only in sample 17.4, just above the lower micritic layer, the dominating taxon is Glossorthis, comprising 70% of the brachiopod assemblage (Table 2). The brachiopod assemblages usually include Paurorthis parva, Nothorthis penetrabilis, Productorthis, and Antigonambonites. Productorthis is represented by P. aculeata below the micritic crust, above the crust both Productorthis aculeata and P. obtusa are present. Productorthis occurs throughout the section except for the lowermost B. triangularis Biozone where Panderina was found instead. Characteristic brachiopod species from the Putilovo mud mound are shown in Figure 5.

The clays of the mud mound are characterized by the presence of a very coarsely ornamented Nothorthis penetrabilis, which has been found together with the normal, more finely ornamented, morphotype. Adult specimens of this taxon that have been sampled outside the mud mound have usually 40 ribs or more at the margin, whereas the mud mound variant mostly has less than 30 ribs. It seems inappropriate to distinguish these two morphotypes, because of the highly variable number of ribs characterizing this species, but the coarser ribbed morphotype may possibly represent a new subspecies or an environmentally adapted variant.

Two new brachiopod taxa have been found in the clays of the mud mound. One is a previously undescribed orthid genus, which was also recorded from the middle part of the Oepikodus evae Biozone at the
Popovka River. The other represents a new species of Neumania, and was collected from the lower and upper clay lenses of the mud mound, and from the clays of the surrounding successions of the P. originalis Biozone. (For description see Egerquist, in press).

Conodonts

The taxonomic compositions of the conodont assemblages are mainly similar in the mud mound samples and in the surrounding coeval layers. However, conodonts are less abundant in the mud mound samples than in the clays of the surrounding strata. Especially the micritic crusts are poor in conodonts; their abundance is here not more than 1000 elements per 1 kg sediment. The lower number of conodont elements in the mud mound indicates a higher rate of sedimentation of the clay forming the mud mound lenses.

The conodonts from the B. triangularis Biozone are much better preserved in the mud mound clay deposits than in the thin coeval limestone bed outside the structure. Moreover, clay samples contain conodont assemblages of the unmixed B. triangularis Biozone that rarely occur in samples of the surrounding succession. The clearly dominating species in the conodont assemblages of the B. triangularis Biozone is D. forceps, which is significantly more abundant than all other conodont species. A similar numerical composition of conodont taxa is typical for the B. triangularis Biozone reported from other regions of Baltoscandia e.g. in Närke (Löfgren 1995) and in northern Öland (Bagnoli & Stouge 1997). However, the dominance of D. forceps is even more significant in the studied locality in the eastern part of Baltoscandia, thus reflecting the small difference in conodont biofacies that occurred in the basin during this time. Typical conodonts of this zone are illustrated in Figure 6.

Discussion and results

The clay lenses of the Putilovo mud mound yield conodont assemblages of the B. triangularis and the lowermost part of P. originalis biozones; these intervals are much thicker in the mound than in the surrounding succession. The clay deposition and formation of clay lenses was favoured by the trapping of terrigenous particles by microbial mats. On the other hand, the mat and its dwellers prevented later erosion and levelling of irregularities of the seabed and re-deposition of reworked fossil fragments.

The sedimentation rate of the clay in the mud mound was relatively low but nevertheless higher than that in the Middle and Upper Volkhov sequences, which is indicated by the lower abundance of conodonts in the mud mound. The rate of mat growth was also high enough to be detrimental for the continued ontogeny of juvenile brachiopods, since these are more numerous in the mud mound clays than in clays from outside the structure.

Evidence of primary lamination in mud mound clays is poor and is preserved in the lower and middle parts of clay lenses only, as the surface of mats was permanently disturbed by the invasions of bioturbators (Fedorov et al. 1998). In spite of the slightly higher sedimentation rate of the mud mound clay, the number of bioclasts in the clay samples is high and comparable with the richest samples from the surrounding sections. A high faunal density is typical for microbial mounds, which usually provide complex ecosystems that are optimally situated with regard to illumination, nutrients, and source of terrigenous material, all resulting in high organic productivity (Gerdes et al. 1985a; Horný 1995). On the other hand, the mats sometimes represent ecologically stressed environments for many species. This is substantiated by the low species diversity and general absence of mature individuals (Gerdes et al. 1985b;
The fossil assemblages of the Putilovo mud mound illustrate both these features, yielding a high density of macrofauna and a large number of juvenile brachiopods in the mud mound clays. However, the composition of the brachiopod assemblages in the mud mound and in the coeval beds outside were generally the same. This indicates that brachiopods were not permanent inhabitants of the mud mound but recurrently colonized the mats. The similarity in taxonomic composition between the conodont assemblages in the mud mound and those in the surrounding, coeval, strata is probably due to their pelagic mode of life resulting in a distribution not influenced by the heterogeneity of the seafloor.

The Early Ordovician shallow-water basin of Baltoscandia was characterized by extreme stability and very low sedimentation rates during more than 10 Myrs. Being located mainly within the limit of one facies, large mud mounds exhibit an example of small-scale environmental short-term heterogeneity of the evolving seafloor. Although this paper is mainly concentrated on brachiopods and conodonts, it is clear that these taxa are not the most significant members of the faunal community of a mud mound. It is more likely that bryozoans and echinoderms played a crucial role in the evolution of the mud mounds, but these elements of the faunas are still awaiting study.

Acknowledgements

T. Tolmacheva and Eva Egerquist acknowledge grants (to Lars Holmer) from the Swedish Natural Science Research Council (NFR) and the Royal Swedish Academy of Sciences (KVA) that have supported this work. Petr Fedorov’s work has been supported by grant AO-148 “Integration” of the Russian Foundation of Fundamental Sciences. We are grateful to Jan Auden Rasmussen and Matthew Parkes for helpful comments on the manuscript.

References

