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A new dispersion formula gives accuracy to the 5th decimal place for the refractive index dispersion curves. 

Empirical constants are listed for minerals, immersion liquids and optical glasses. Auxilliary formulas and 

a flow programme for double variation refractive index determination are given. 
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During an interferometric study of minerals in 
thin section difficulties in determinating high 
orders of interference turned out to be due to lack 
of knowledge of the dispersion curves of the 
minerals. The dispersion formulas of Hartmann 
(1898) and Cauchy (1830) give errors of more than 
10-3 and will often make interferometric R.I. de
terminations impossible. Detailed calculations 
showed that each of the above mentioned disper
sion formulas had advantages, and an attempt 
was therefore made to combine both formulas 
thus: 

n(.l) = N+ (eq. 1) 

where n(.l) is the refractive index at wavelength .l. 
N, M, L, p and Ao are constants. If Ao and p are 
known this formula is suited for an automatic least 
squares refinement (computer programm in RPN 
for HP 9815A available from the author) for 
determining N, M, and L, using 

n(.l)=N +MX+LX2
, 

where X= (.l-.lo) ·P. 
(eq. 2) 
(eq. 3) 

Ao and p were determined by a least squares re
finement from the refractive index data for quartz 
determined by Sosman (1927) because of the 
extreme accuracy (± 3 x 10·•) of these measure
ments. The optimum values of Ao and p are Ao= 

· 311.33 nm and p = 0.535 giving a standard devia
tion between calculated and measured refractive
indices of 4 X 10·•. A contour map giving standard
deviation as a function of Ao and p, however,
showed that around Ao"' 311 nm and p "'0.54

small changes in Ao and p would rapidly impair 
the calculated dispersion curve. Another optimum 
around .lo= 180 nm and p=0.6 is much broader, 
but here the standard deviation is no better than 
8 X 10·•. 

Minerals 

To increase the field of application of the disper
sion formula 32 sets of dispersion data significant 
to 5 places of decimal representing 9 different 
minerals (Miilheims 1888) were used in a least 
squares refinement for Ao and p. This gave an 
optimum around .lo= 167 nm and p=0.5 with a 
standard deviation of 29 x 10·• for the 32 mineral 
dispersion curves. For the quartz data of Sosman 
(1927) the standard deviation here becomes 
11 x 11 ·•. An average value covering quartz as 
well as the other minerals is Ao = 180 nm and 
p = 0.5. Here the standard deviation is for quartz 
8x 10·• and for the 32 mineral curves 29x 10·•. 
The dispersion formula for minerals thus be
comes: 

-N+ M + L n- \!.l-180 (.l-180)'
(eq. 4) 

or using the average D-line: .l = 589.29 nm: 

n=n(D)+Mx( � - 0.0494287)+ 
1 Lx( .l-180 - 0.0024432), (eq. S) 

Dispersion coefficients for some of the minerals 
used are given in table 1 .. 
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Table 1. Dispersion coefficients for the minerals used for 
establishing the dispersion formula. 

Jo=180nm, p = 0.5 
wavelength in nm 

Anhydrite, Stassfurt 

Aragonite, Bilin 

Baryte, Cornwall 

Calcite 

Colemanite, California 

Fluorite 

Gypsum, Sicily 

Halite, Friederichshall 

Quartz (Sosman, 1927) 

Quartz 

Sanidine, Wehr 

Sanidine 0° C, Duckweiler 
(Offret, 1890) 

Topaz, Brazilia 

Topaz, Nertschinsk 

Topaz, Schneckenstein 

a 
P 
y 
a 
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y 
a 
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a 
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n(D) 

1.56937 
1.57523 
1.61306 

1.52991 
1.68097 
1.68540 

1.63612 
1.63729 
1.64816 

1.65846 
1.48630 

1.58626 
1.59200 
1.61404 

1.43384 

1.52078 
1.52275 
1.52983 

1.54385 

1.544234 
1.553343 

1.54420 
1.55330 

1.51986 
1.52442 

1.52058 
1.52513 
1.52521 

1.62938 
1.63081 
1.63752 

1.61326 
1.61597 
1.62254 

1.61551 
1.61808 
1.62501 

n(F)-n(C) 
x l O 3 

7.58 
7.92 
8.23 

6.56 
12.75 
13.13 

9.03 
9.18 
9.47 

13.52 
6.06 

8.70 
8.89 
9.49 

4.45 
7.77 
7.84 
8.10 

12.66 

7.801 
8.067 

7.81 
8.09 

8.08 
8.14 

8.01 
8.10 
8.21 

8.17 
8.04 
8.12 

7.80 
7.71 
7.76 

7.83 
7.68 
7.72 

M 

0.0183 
0.0797 
0.4128 

-0.1402 
0.0824 
0.0667 

0.1017 
0.0825 
0.1175 

-0.1143 
-0.3711 

1.0153 
0.7510 
1.0088 

0.1127 

0.3917 
0.4906 
0.5765 

-0.1152 

0.23134 
0.23773 

0.2958 
0.1882 

-0.0332 
0.2468 

-0.3168 
-0.3339 
-0.3155 

0.3938 
0.3636 
0.3816 

0.2886 
0.3234 
0.3769 

0.4567 
0.5140 
0.6143 

L 

6.315 
6.009 
3.047 

6.983 
10.125 
10.602 

6.750 
7.068 
6.973 

12.697 
8.798 

-2.401 
0.328 

-1.662 

2.723 

2.854 
1.953 
1.341 

11.964 

4.4386 
4.6044 

3.822 
5.106 

7.247 
4.581 

9.944 
10.187 
10.094 

3.181 
3.362 
3.248 

3.878 
3.465 
2.991 

2.274 
1.592 
0.649 

The figures in this table are calculated from data given by 
MOlheims (1888) unless otherwise indicated. The line b27 is omitted. 

The dispersion n(F)-n(C) can be calculated 
from M and L as: 

n(F)-n(C) = 0.01133223 X M + 0.00116694 x L 
(eq. 6) 

Otherwise there is no simple relation between M, 
L and n(F)-n(C). Plots of L versus n(F)-n(C) 
and M versus n(F)-n(C) show considerable 
scatter, but also general trends corresponding to: 

M=*-44x(n(F)-n(C)) + 0.58 
L ^1386x(n(F)-n(C))-7.9 

which may be used as rough approximations in 
form: 
n(A)-n(D) = 
(n(F)-n(C))xf _ Z ^ + / -44 1386 

180 
58 

(A-ISO)- 1 ' 2 1 1 5 ) 
7 9 \ 

- 0.0094 
•180 (A-180) 

In interferometric determinations of refractive 
indices the last bracket will disappear, because 
our observations concern a difference between 
two minerals at the same wavelength. 
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Immersion liquids 

The dispersion formula - eq. 4 - found for mine
rals is not suited for liquids. For the immersion 
liquid series Nujol (Ph.Dan.) 1.4806 - a-mono-
bromonaphtalene (Merck) 1.6565 and a-mono-
bromonaphtalene (Merck) 1.6565 - diiodo-
methane (Merck) 1.7377 mag. scient. John Rose-
Hansen and the author in 1959 determined the 
dispersion curves at ca. 24°C and at ca. 48°C 
with an accuracy of better than ± 4 x 10"5. The 
curves have been used for double variation mea
surements since and the figures were therefore 
available for numercial treatment. Least squares 
refinements for Ao and p showed that p is nearly 
constant at ~ 1.2 for the liquids, but that the 
optimal Ao values range from 70 nm to 210 nm. 
A least squares refinement applied to all the 
liquids gave the average values A« =190 nm and 
p=1.23, which give a standard deviation of 
17 x 10"6 for all these liquids. Dispersion coeffi
cients for the immersion liquids are given in 
table 2. In the two mixture series M and L vary 
smoothly with n(D). Interpolation functions 
were therefore determined by least squares para
bola fits giving for the low index series 

1.481-1.657, wavelength and temperature in 
brackets: 

M(24) = 427.029710 + 365.796377 X n(D,24)-
40.706504 xn2(D,24) (eq. 7) 

and 
L(24) =-36117.68-25911.98 xn(D,24) + 

32829.56 xn2(D,24) (eq. 8) 

for the high index series 1.657-1.738: 
M(24) = 153.071121 -218.229664 x n(D,24) + 

100.425447 X n2(D,24) (eq. 9) 
and 

L(24) = 339422.0-402582.8 X n(D,24) + 
123300.1 Xn2(D,24) (eq. 10) 

The use of these interpolation formulas however 
increases the standard deviation between calcu
lated and measured refractive indices to 35 x 10"6 

in the low series and to 55 X10"6 in the high series. 
Nevertheless, the accuracy is sufficient for nearly 
all optical work in powder specimens. 

From the goniometric measurements at ca. 
24° C and at ca. 48° C the temperature coefficients 
for n(D) are calculated, table 2. In the low series 
(1.481-1.657) we can interpolate by 

M I 2 ) = (-2206.5+ 2946.7 xn(D,24)-
At 

1157.5 xn2(D,24))xl0-6 degree-1 (eq. 11) 

In the high series (1.657-1.737) we can interpolate 

b y ^ P = (54767.9-62438.9 xn(D,24) + 

17551.9 X n2(D,24)) x 10"6 degree"' (eq. 12) 
According to Lorenz (1863-64) and Lorentz 

1 n2 - 1 
(1880) the specific refraction r = ^ x n 2 + 2 where 

d is the density, is independent of temperature, 
but varies with the wavelength. 

In order to describe the temperature dependence 
of the dispersion we use the expression 

Table 2. Dispersion coefficients for immersion liquids at 24.0°C. 

The figure in this table are based on the measurements 
made by John Rose-Hansen and the author. 

Ao=190nm, p = 1.23 
wavelength in nm 

Nujol, pH. Dan. 
mixture 

» 
» 
» 

a-monobromonaphtalene, Merck 
mixture 

» 
» 

Diiodomethane, Merck 

n(D) 

1.48060 
1.51940 
1.56002 
1.59214 
1.62283 
1.65654 
1.67390 
1.69517 
1.71400 
1.73770 

n(F)-n(C) 
xlO"3 

8.50 
13.70 
19.27 
23.65 
27.85 
32.40 
33.11 
34.41 
35.50 
36.94 

M 

25.07 
35.28 
44.70 
51.52 
59.62 
67.29 
69.46 
71.31 
74.74 
77.09 

L 

-2286 
- 134 

3269 
6332 
8182 

10960 
10722 
11758 
11303 
12240 

An(D) 
At 

x l O -
degree"' 

-3 .82 
-4.02 
-4.20 
-4.53 
-4.78 
-4.98 
-5.71 
-6.41 
-6 .84 
-7 .34 

4 D.g.F. 27 
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Table 3. Flow programme for refractive index determination 
by variation of wavelength and temperature - the double varia
tion method - using optical glass as internal standard. Operatio
nal blocks marked with " P " involves "personal" operations, 
those marked with "C" are calculations made by the computer. 

Subscript "g" indicates glass. Subscript " 1 " indicates liquid. 
Subscript "m" indicates mineral. Flow programmes for other 
types of refractive index measurements and corresponding 
computer programmes in RPN for HP 9815A are available 
from the author. 

0* 
(start) 

Enter the refractive index of the op

tical glass used as standard = n (D) 

Call M and I from file 
g g 

©~ Enter refractive index of immersion 

liquid used •» n.f.D.24) 

X 
1^(24) and 1^(24) [eqs 8-11] 

©- Determine and enter X corresponding to 
g n IX 1 - nx(X t ) 

n (X .24) 
g g 

[ e q . 1] 

Set n j U , t ) = n g U g »24 ] 

logR^lX , t ) [ e q . 13] 

z 
^ V 0 ' * 1 approx. ' ^ R i < V t } 

-ilogR^X , 2 4 ) - l o g R 1 ( D , 2 4 ] ] [ e q s 1 , 7 - 1 0 , 1 4 ] 

I 
C 

c 

c 

t 
approx. 

- 2 4 

n jCD. t ) approx. 
t 

' " i f ' t ^ n n r n « " " 1 ( 0 . 2 4 ) ) 
i approx. i 

An(D)/At 
1 

• 

ZogR^X ,t)-logRl(0,t) 

[ e q . 13] 

[eqs 11 & 12] 

• 

[ e q . 15] 

r 
logR,[Q,t) [second approximation] = 

logRAXa,t)-(logR,(X ,t)-logRAD,t)) [eqs 1,7-10 8 14] 

X 
n,[D,t) [second approximation] [eq.13] 

© 
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Table 3, continued 

Co) 

51 

0- No 

©-^ 

© 
©-

c 

p 

c 

c 

c 

c 

t [second approximation] [eqs 11 & 12] 

t 
Determine and enter X corresponding to 

m r 6 
nm(Xm) - n,(X.t) m m 1 m 

" 
• logRll\m,t) - logR^D.t) + 

(1+213x10'6(t-24))(Zo^Rl(Xm»24)-Zo?Rl(D,24)) [eq. 15] 

1 
n ^ X ^ t ) [eq. 13] 

t 
Set nm(Xm.t] = nl(Xm.t) 

• 
n m C V 2 4 ) " " ^ ^ ' t ' ' Ct-24)x10-5 

X 
Do you need more points on your 

dispersion curve for the mineral? 

Yes 

Change the temperature of your powder mount or 

make another powder mount with another 

liquid and perhaps another glass 

-^ Did you make another powder mount? \ 

Yes 

BJ < N o <̂  Did you take another glass? >̂ 

Yes 

Determination by least squares 

refinement of N, M and L [eqs 1 8. 2] 

Print out: n (D), n (F)-nm(C), W 2 4 ) , m m m 
L(24), standard deviation 

<S> 
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r(A) = J x R(A,t), where R(A,t) = ̂ f) + \ 

(eq. 13) 
If the specific refraction is independent of tem
perature we should be able to write 
/ogR(A.t) - /ogR(D,t) = /ogR(A,24)-/ogR(D,24) 

(eq. 14) 
This means that dispersion curves with /og(R) 

as ordinate should be displaced parallel when 
the temperature changes. One dispersion curve 

and . t should therefore be sufficient to cal
culate the refractive index of one liquid at all 
temperatures and wavelengths, assuming An(D)/At 
to be independent of the temperature. This is 
nearly the case, but not fully. The measurements 
actually give a temperature coefficient slightly 
different from zero. 
Ar/ogR(Agt) -/ogR(D,t)) 

^ = (213±27)10-6deeree-' 
/0gR(A,24)-/ogR(D,24) l ' (<J J 5 ) 

Within the limits of accuracy, this is independent 
of the spectral line and of the liquid used. The 
/ogR-dispersion is therefore not constant, but 
increases by 0.0213% per degree centigrade. A 
change of +30° will change the /ogR-dispersion 
by 0.69b corresponding to maximum errors of 
3 X 104 in the blue part of the spectrum if the 
temperature coefficient is neglected. This is insig
nificant for most measurements but is easily cor
rected for by use of eq. 15. 

When we combine the dispersion formula 
(eq. 1), with the interpolated temperature 
gradients (eqs. 11 or 12) and with the correction 
for changes in dispersion with temperature (eqs. 
13 and 15), we can calculate the refractive index 
for any liquid in the two series at any wavelength 
and temperature. The standard deviation has now 
increased to ca. 70 x 10". 

The greatest sources of error in refractive index 
measurements by the immersion method are varia
tions in temperature and changes in the compo
sition of liquid mixtures. These errors, however, 
can be largely eliminated by use of optical glass 
powder as internal standard (Micheelsen 1957). 

Optical glass 

The dispersion values for optical glasses can be 
read in the catalogues of the optical glass works 

to ± 20xl0"\ Least squares refinement show 
that all glasses except the DEDF glasses (Double 
Extra Dense Flint) can be described by Ao=135 
and p = 1.08 with a standard deviation of 9 x 1 0 \ 
The DEDF-glass can be described by A<>= 170 nm 
and p = 1.27 with a standard deviation of 13 x 10"'. 
The glasses show no useful relation between M 
and L. Examples given in table 4 show that flint 
glasses and crown glasses at the same n(D) value 
have approximately the same M-value and that 
the difference in dispersion is connected with the 
much larger L-value of the flint glass. 

Table 4. Dispersion coefficients for some optical glasses used 
as standards for refractive index measurements. 

Ao=135nm, p = 1.08 
wavelength in nm 

Chance Glass HC 
» » LBC 
» » MBC 
» » DBC 
» » SBC 
» » SBC 
» » SBC 
» » ELF 
» » BLF 
» » DF 
» » BF 
» » SBF 

n(D) 

1.52391 
1.55021 
1.57210 
1.60129 
1.65069 
1.69087 
1.71986 
1.54877 
1.57415 
1.62609 
1.66052 
1.74383 

n(F)-n(C) 
xlO"3 

8.99 
8.72 
9.92 

10.01 
11.11 
12.61 
14.32 
12.07 
11.04 
17.59 
18.31 
16.64 

M 

12.82 
13.23 
14,09 
14.61 
16.04 
17.85 
19.26 
14.60 
14,47 
18.00 
18.53 
20.80 

L 

579.3 
289.2 
659.7 
527.3 
648.5 
855.9 

1317.2 
1661.2 
1144.5 
3537.7 
3750.2 
2065.8 

The figures in this table are calculated from data given by 
Chance-Pilkington (1961). 

Double variation method 

The double variation method for measuring 
refractive indices of powders was introduced by 
Emmons (1943). The method involves variation 
of the wavelength of the light and of the tem
perature of the powder mount. The method is 
rapid and, when optical glass is used as internal 
standard, accurate (Micheelsen 1957). The double 
variation method is complicated, however, by the 
use of dispersion curves for many liquids at 
many temperatures. Another draw-back is that 
the shapes of the dispersion curves have not been 
known with sufficient accuracy, as the Hartmann 
nets commonly used do not give straight disper
sion curves. 

The dispersion formulas given in this paper 
remedy the problem with the Hartmann net. Fur
thermore, when determining the points on the 
dispersion curve of the mineral, the interpolation 
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formulas, eqs 7-10 and the temperature correc
tion formulas eqs 11-15 make the multitude of 
dispersion curves unnecessary. Finally, the graphi
cal determination of n(D) and n(F)-n(C) can be 
replaced by an automatic data treatment using a 
least squares refinement with eqs 2 and 3. 

The way of calculation will depend on the 
experimental conditions: 1) Is the temperature 
read on a thermometer or determined from the 
refractive index of a glass standard? 2) Is the 
liquid stable or, if it is unstable, is the change 
controlled by a glass standard or not? 

The flow programme given in table 3 describes 
the double variation method using optical glass 
as internal standard. The temperature of the 
specimen is controlled by means of the refractive 
index of the liquid. In principle the immersion 
liquid is assumed to be chemically stable but in 
fact the high index series is not stable. The change 
in dispersion corresponding to a decrease in n(D) 
of these liquids is, however, not much different 
from the effect of an increase in temperature. 
Minor changes in the composition of the liquid 
are therefore registered as an increase in tem
perature and will not give significant errors. 
However, the marginal parts of the powder mount 
should be avoided (Micheelsen 1957). 

A second assumption is that the An(D)/At of 
the mineral is equal to that of the optical glass, 
whereby they will cancel each other in the final 
result. According to Offret (1890) An(D)/At 
ranges from 0 to-16x10"6 degree"1 for a number 
of minerals. 

According to Chance-Pilkington the coefficient 
of linear thermal expansion of the optical glasses 
used here range from 6 to 9xl0 - 6 degree-1. The 
coefficient of linear expansion can be converted 
approximately to the temperature coefficient of 
the refractive index by use of eq. 13, giving 
—13 to-24x 10-6 degree-1. Temperature variation 
with optical glass as internal standard is therefore 
likely to give errors in n(D) of + (1 ± 1) x 10-4 for 
each 10° rise from room temperature. This 
average correction is used in the programme. 

A third assumption is that the change in dis
persion with temperature is neglible for the mine
ral as well as for the glass. This error can also be 
estimated by use of eq. 13. It will not exceed 
1X 10-5 and is therefore neglected. 
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Dansk sammendrag 
En ny formel for optiske dispersionskurver gør det muligt at 
beregne lysbrydningsforholdet som funktion af bølgelængden 
med bedre nøjagtighed end 10 s . Tabeller giver de optiske kon
stanter for nogle mineraler, for vore almindelige lysbrydnings-
væsker og for en del optiske glasser. Endvidere fremlægges hjæl
peformler og et flow program, som gør det muligt at anvende 
databehandling ved brug af kombineret bølgelængde- og tempe
raturvariation til lysbrydningsmåling på mineraler. 
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